

Teaching Physics in Alabama

Alliance for Physics Excellence (APEX) Physics Teaching Research Program (PTR)

Dennis Sunal, JW Harrell, John Dantzler, Cynthia Sunal, and Marsha Simon Michelle Wooten (PTR Team) University of Alabama

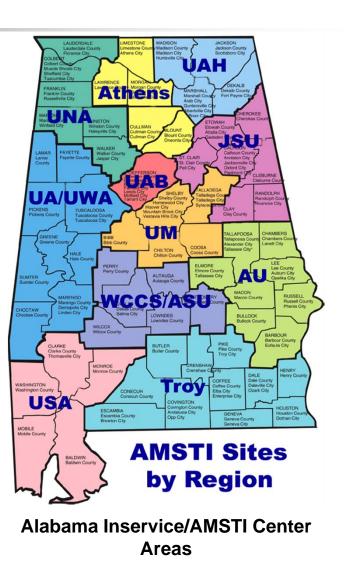
Alliance for Physics Excellence

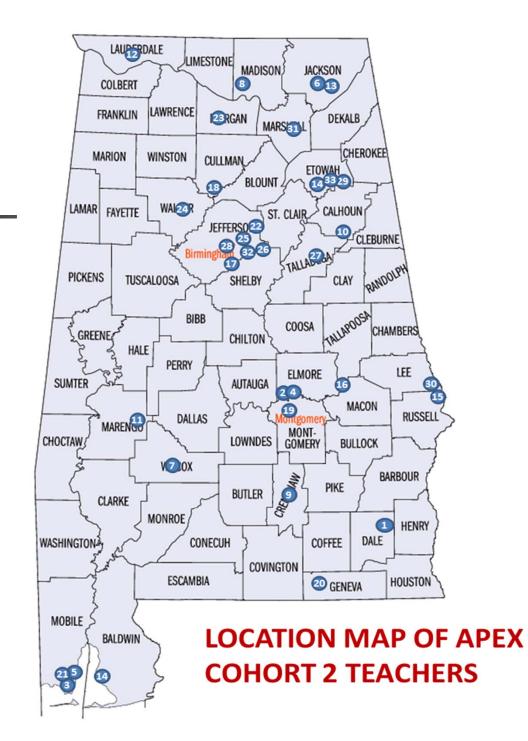
The goal of the *Alliance for Physics Excellence* (APEX) program is to integrate researchbased teaching practices into Alabama physics classrooms via in-service teacher education, and evaluate the impact on physics teachers and their students in the state's school systems.

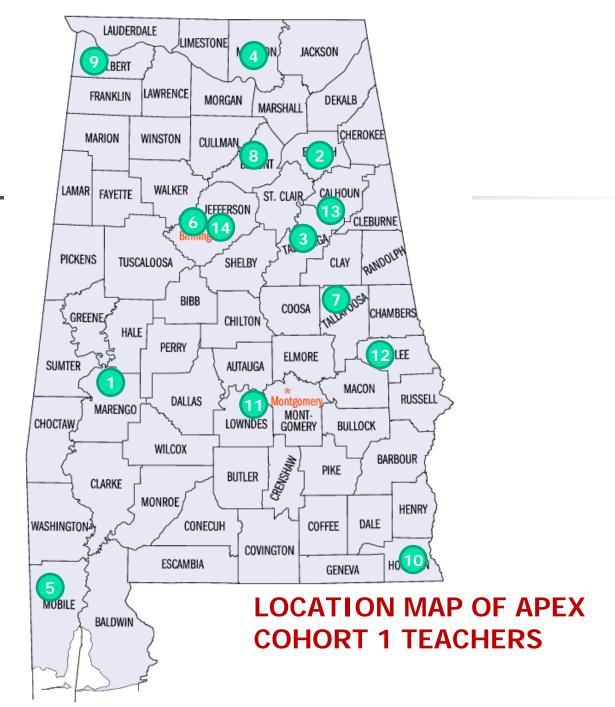
APEX

Physics Teacher Research (PTR)

APEX PTR 2013-2014 Cohorts 1 & 2 Data Collection & Analysis Team


> Dennis Sunal John Dantzler JW Harrell Lauren Holmes Tara Ray Marsha Simon


Cynthia Sunal Erika Steele Marilyn Stephens Donna Turner Brie Winkle Michelle Wooten Who are Alabama Teachers of Physics?


> Selected Sample APEX Cohort 2

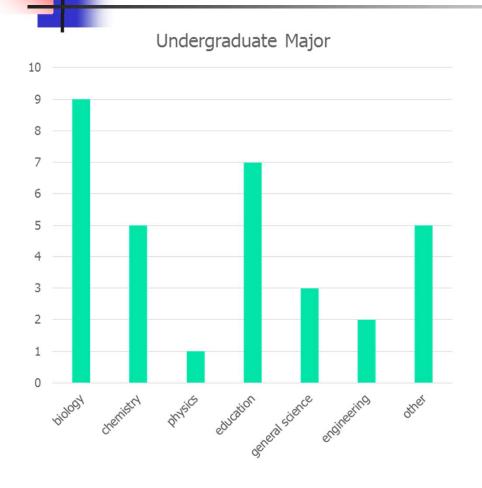
Selected APEX Sample – Cohort 2

 38 Physics teachers were selected from each of 11 Alabama Inservice /ASIM Centers

APEX Cohorts 2 & 1 School Characteristics

- 38% (45%) under-represented minorities (AL=42%)
- 52% (56%) free lunch (SES) (AL=47%, US=39%)
- 83% (70%) graduation rate (AL=72%)
- 17% (17.6) Student/Teacher ratio (AL=14.3, US = 14.2)
- Average school size = 1058 (1009) students
- Average school type = grades 9-12, most common

APEX Cohorts 2 (&1) Physics Teachers


- Years teaching science
 - Sample total = 332 (149) years
 - Average = 11.45
 (10.6) years
 - Range = 2-34 (2-19) years

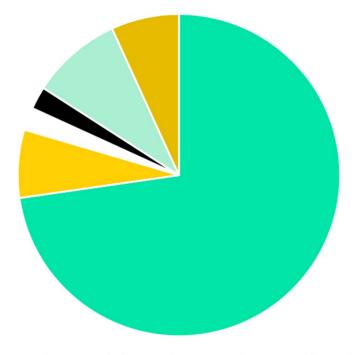
- Years teaching physics of total
 - Sample total = 182 (81) years
 - Average 6.52 (5.8) years
 - Range = 1-28 (1-15) years
- Physics teachers
 - 68 (71) % Female
 - 32 (29)% Male

Undergraduate college majorprimary

- 37 (57)% Biology (or biology with general science)
- 16 (7)% Chemistry
- 3 (14)% Physics
- 44 (14)% Other

APEX Cohort 2 Physics Teachers

Undergraduate College Major


- Biology = 28%
- Chemistry = 16%
- Physics = 3%
- Education = 22%
- General Science = 9%
- Engineering = 6%
- Other = 16%

Teacher certification

- 94 (86)% General science
- 6 (7)% Physics & Mathematics
- 0 (7)%
 Physics/General science

All areas of certification represented by percentage

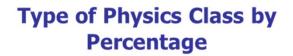
Certification Areas

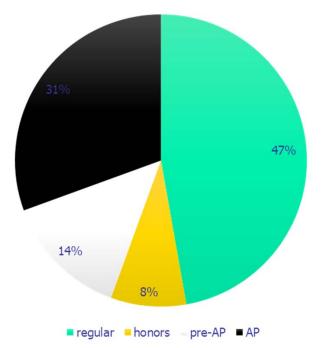
general science = biology chemistry = physics = math = other

College/University degree

- Bachelors = 45 (90)%
- Masters = 48
 (90)%
- Ph.D. = 3%
- Other = 3%

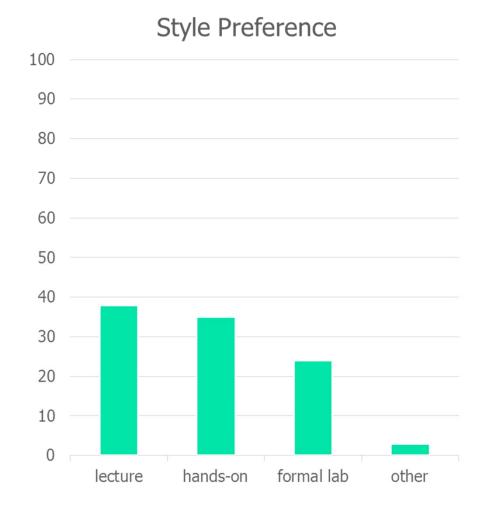
Professional development experience


- Science = range 0-20, avg. 6.67
- Physics = range 1-10, avg. 3.05


What Happens in our Alabama Physics Classrooms?

Benchmark Indicators

The Sample of Alabama physics classes- APEX Cohorts 2 (& 1)


- <u>Types of physics</u> <u>courses</u> represented
 - 31 (14)% AP Physics
 - 8 (29)% Honors physics
 - 14 (14)% Pre AP
 - 47 (43)% "General" Physics

Benchmark Indicators

- Physics teacher preferences (priority order) (from APEX application) Cohorts 2 (1)
 - 38 (31)% lecture
 - 24 (17)% formal lab
 - 35 (31)% hands-on activity
 - 3 (21)% other (individual work & problems)

Physics teacher preferences (priority order)(from Appliction)

- Cohort 1
 - 1. Hands-on
 - 2. Formal labs
 - 3. Lecture
- Cohort 2
 - 1. Lecture
 - 2. Hands-on
 - 3. Formal labs

Cohorts 2 (1)

- Number of <u>physics classes</u> <u>per day per</u> teacher
 - Average = 1.82 (2)
 - Range = 1-6 (1-6) classes

Benchmark Indicators (from interviews)

- Goal in teaching physics (priority order)
 - 1. Gain basic content for college
 - 2. Understanding of how the world works
 - 3. Problem solving skills
 - 4. Critical thinking skills

- Important content in physics to cover
 - Newton's Laws
 - ALCOS physics topics

Benchmark Indicators (from interviews)

Best way to teach physics

- All referred to different descriptions of "hands-on approaches" =
 - Activities
 - Labs
 - Problem solving

- Inquiry
- Experience
- Discovery
- Hands-on

Benchmark Indicators (from cohort 1 teacher interviews)

Challenges to teaching physics

- Lack of time for planning hands-on lessons (inquiry) and grading by providing feedback in a meaningful way
- Lack of knowledge of physics concepts
- Lack of mathematics knowledge

Benchmark Indicators (from cohort 1 student group interviews)

APEX Cohort 1 Physics Students

- Number of <u>students</u> <u>in PTR observed</u>
 - <u>classes</u>
 - Total=267
 - Class average=18
 - Range = 12-28

Benchmark Indicators (from cohort 1 student group interviews)

Interest in Physics (priority order)

- Interest in physics related to college career goals and success in college
- Interested in physics (no reason)
- 3. Not interested in physics (no reason)

 Attracted (enjoyed) to laboratory experiences in physics

 5. Interested

 (appreciated) in real world
 applications

Benchmark Indicators (from cohort 1 student group interviews)

Definition of

science (physics) (priority order)

- Concept of physics not changed due to course
- Physics more complex

Attitude toward science (physics) (priority order)

- Felt worse anxiety or more challenging than expected
- Felt the same- however more curious, now easier (met the challenge); both related to hands-on, lab, & project experiences

Benchmark Indicators (from cohort 1 student group interviews)

Career plans (priority order)

- Most interested in college STEM fields
- chemistry, engineering, medicine

Source of career interest

- Early school experiences, parents
- Specific experiences health in family, TV shows, museum visits
- Physics course science less boring, more relevant

Cohorts 2 (& 1) Reformed Lesson Observation Protocol

- Maximum rating possible = 100
- Average rating = 47.9 (52)
- Range = 13-87 (10-87)

65 = moderate level of classroom innovation with NSES/NGSS

50 = presence of some reform characteristics

20= low level of reform, traditional teaching

MacIsaac & Falconer, 2002

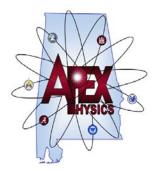
Cohort 1 **Observation Sub-score** rating. Maximum = 20

- 9.1 -Lesson Design & Implementation
- 12.3 -Propositional Knowledge
- 9.6 -Procedural Knowledge
- 8.2 -Communicative Interactions
- 12.6 -Student/Teacher Relationships

Teacher reported classroom learning environment (Context) Cohorts 2 (& 1)

Total rating = 56 (95) (maximum = 125)

Student reported classroom learning environment (Context) Cohorts 2 (& 1)


Total rating = 86 (86) (maximum = 125)

No difference between gender of teacher or students

- Cohorts 2 (& 1) Learning Environment Sub-score rating.
 - T S (Maximum =25) *Significant difference p<.05
- 11-18* (20-18) Learning about the world (relevance)
- 13-17* (18-18) Learning about science
- 12-18* (19-17) Learning to speak out
- 12-11 (17-12) Learning to learn
- 09-20* (22-20) Learning to communicate

What do the benchmark measures mean to you as a member of a collaborative group of physics teachers?

Teaching Physics in Alabama

Alliance for Physics Excellence (APEX) Physics Teaching Research Program (PTR)

Dennis Sunal, JW Harrell, John Dantzler, Cynthia Sunal, Marsha Simon, and Michelle Wooten (PTR Team) University of Alabama