

Alliance for Physics Excellence (APEX) Physics Teaching Research Program (PTR)

Dennis Sunal, JW Harrell, John Dantzler, Cynthia Sunal, Marsha Simon, Donna Turner, Tara Ray, Michele Wooten, and Marilyn Stephens (PTR Team) University of Alabama

Alliance for Physics Excellence

The goal of the *Alliance for Physics Excellence* (APEX) program is to integrate researchbased teaching practices into Alabama physics classrooms via in-service teacher education, and evaluate the impact on physics teachers and their students in the state's school systems.

Teacher Action Research

Action Research is a strategy for extending APEX professional development and facilitating change in your electricity and magnetism unit physics teaching

Action Research Facilitates Change in Beliefs

- Over the last two summers we said.....
- > All teachers have beliefs which guide their teaching.
- > Beliefs are constructions of reality.
- Can you determine which of your beliefs are "truthful" or "misconceptions"?
- > The process of changing is the process of changing beliefs.
- How do you change beliefs?
- > How can you change your beliefs about physics teaching?

Professional Development through Teacher Action Research

What is the Action Research process that will help you monitor your progress in using the APEX PTI information and understandings from the past 1¹/₂ years?

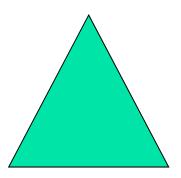
- How will your study add to your understanding of the problem and question (teaching your E&M Unit)?
- What different kinds of evidence (documentation) are you using to answer your question? Three sources are needed to give you confidence and understand the result.

Reflections on Teaching Physics During Spring 2015

1. Christina Caldwell 6. Angela Olguin

- 2. David Hall 7. Cynthia Phillips
- 3. Mara Johnson 8. Rochelle Williams
- 4. Mark Maddox

9. Timothy Williams


5. Angela McLeod

APEX Cohort 1: Action Research Activity with Electricity and Magnetism Unit #1, Spring 2015

- Description of context of the Electricity and Magnetism unit
- Lesson plans or lesson outline of E&M unit
- Daily diary of events that occurred
- Administer students' pre and post revised EMCI test
- Interview your students
- Narrative reflective summary of the action research activity-What did you learn? What was the evidence?
- Report the results of this activity with parts 1-7 in a written narrative report, including the students' pre and post test scores and attach it in an email to dwsunal@bama.ua.edu by May 15, 2015

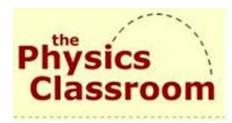
Different Kinds of Evidence Used?

How do these three sources work together to answer your question?

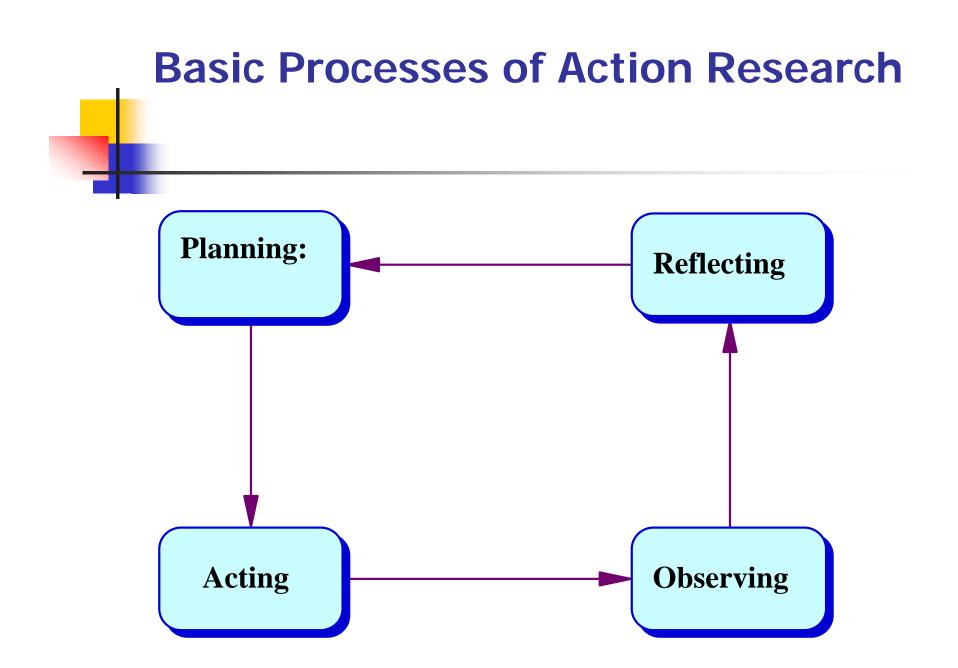
Inquiry Teacher's Actions and Students' Responses

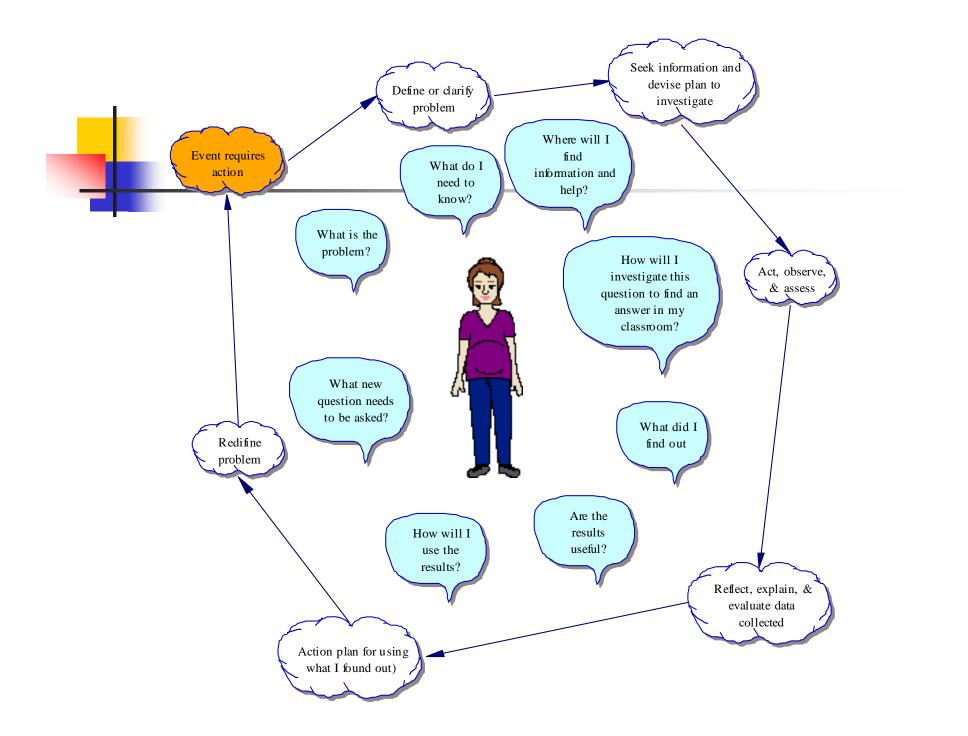
Essential Features of Classroom Inquiry and Their Variations

Essential Features	1	2	3	4	5	6		
of Inquiry	Full Inquiry Teaching (Can Use Learning Cycle)	Coupled Inquiry (Can Use Learning Cycle)	Guided Inquiry	Directed Inquiry	Verification	Expository		
More <								


Less < ______Amount of Direction from Teacher or Material ______More

Essential Features of Inquiry 1. Learner engages in scientifically oriented questions	1 Full Inquiry Teaching (Can Use Learning Cycle) Learner poses a question	2 Coupled Inquiry (Can Use Learning Cycle) Learner selects among questions, poses new questions	3 Guided Inquiry	4 Directed Inquiry	5 Verification	6 Expository
2. Learner gives priority to evidence in responding to questions	Learner determines what constitutes evidence and collects it	Learner directed to collect certain data	Learner given data and asked to analyze	Learner given data and told how to analyze	Learner given data and told how to analyze that <u>replicates</u> one provided	Learner given no data just conclusions
3. Learner formulates explanations from evidence	Learner formulates explanation after summarizing evidence	Learner guided in process of formulating explanations from evidence	Learner given possible ways to use evidence to formulate explanation	Learner provided with evidence	Learner provided with evidence that replicates conclusions already given	Learner provided with no evidence, only conclusions
4. Learner connects explanations to scientific knowledge	Learner independently examines other resources and forms the links to explanations	Learner directed toward areas and sources of scientific knowledge	Learner given possible connections	Learner provided with connections	Learner provided with connections that <u>replicates</u> one provided	Teacher reports connections
5. Learner communicates and justifies explanations	Learner forms reasonable and logical argument to communicate explanations	Learner coached in development of communication	Learner provided broad guidelines to sharpen communication	Learner given steps and procedures for communication	Learner reports how close to the textbook the conclusions were	Learner reports no conclusions


Teacher Action Research


Action Research as a strategy for facilitating change in your physics teaching

Ongoing Action Research Model (perhaps several cycles for a complex innovation)

A Spiraling Process:

- revise focus (redefine problem)
- > modify or use new hypotheses (plan)
- leading to new actions and new data analysis
 (act, observe & assess)
- revise previous conclusions (reflect, explain & evaluate)
- redevelop grounded theory (understand)
- > etc.... in a continuous spiral leading to selfprofessional development and change

Action Research: Summary

- Note that the question is not, "What should the teacher do next Monday?", but rather "How can you select, adapt, use, or re-conceptualize PTI materials to make learning more productive for students?"
- Action research, also, involves physics teachers in the process of defining, making decisions about, and solving problems leading to their own professional change and growth.

Action Research

- Not a deficit model
- Experience is not enough
- Creates a climate of search for knowledge. This is more likely to produce change than finding answers.
- Not traditional formal research
- Self-reflective inquiry to improve teaching

References

- Albern, S. (2011). A toolkit for action research. Lanhan MD: The Rowman & Littlefield Publishing Group, Inc.
- Angelo, T. & Cross, P. (1993). *Classroom assessment techniques*. San Francisco: Jossey-Bass
- Lawson, A. (1995). Science teaching and the development of reasoning. Belmont, CA: Wadsworth
- Sagor, R. (2005). The action research guidebook: A four-step process for educators and school teams. Thousand Oaks CA: Corwin Press.
- Schmuck, R. (2006). *Practical action research for change.* Thousand Oaks CA: Corwin Press.
- White, R. & Gunstone, R. (1992). *Probing understanding*. New York: Falmer Press.

Action Research Related Web Sites

Developing an Action Research Plan with Examples

http://www.bamaed.ua.edu/sciteach

Web-based Action Research Activities:

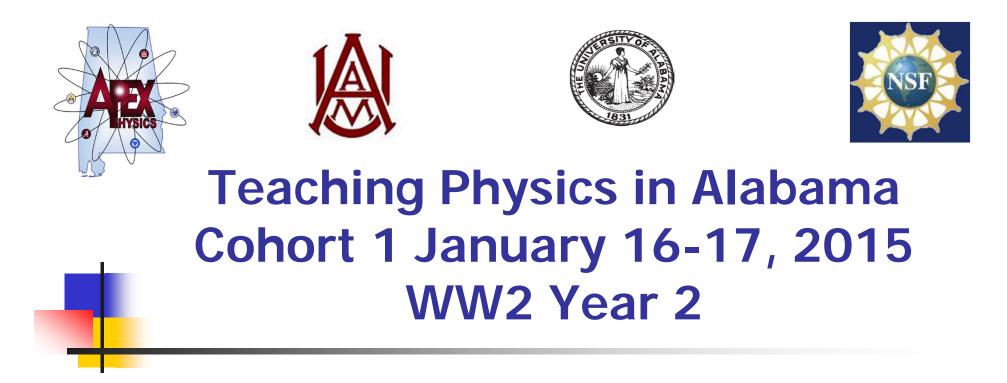
http://archon.educ.kent.edu/Oasis/Pubs/0200-08.ht

An Introduction to Action Research

http://www.phy.nau.edu/~danmac/actionrsch.html

Action Research-Linked Sites

http://carbon.cudenver.edu/~myder/itc/act_res.html


Virtual Fly Lab:

http://vcourseware3.calstatela.edu/VirtualFlylab/IntroVflyLab.html

Pathway: Physics Teaching Web Advisory. Ask an expert a question.

- <u>http://www.physicspathway.org/</u>
- Digital <u>video library</u> for physics teaching at secondary school level
- Four expert physics teachers provide expert advice in short scenes through synthetic interviews - Roberta Lang, Paul Hewitt, Chuck Lang, & Leroy Salary
- Related Videos are also available

Alliance for Physics Excellence (APEX) Physics Teaching Research Program (PTR)

Dennis Sunal, JW Harrell, John Dantzler, Cynthia Sunal, Marsha Simon, Donna Turner, Tara Ray, Michele Wooten, and Marilyn Stephens (PTR Team) University of Alabama